find the area of a shaded region of each circle has diameter of 20cm​

Find The Area Of A Shaded Region Of Each Circle Has Diameter Of 20cm class=

Sagot :

✒️AREA

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

  • Find the area of a shaded region of each circle has diameter of 20cm

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \:\: \rm{\approx 172 \: sq. \: cm.} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

  • To find the area of the shaded region, we must subtract the area of the two inscribed circles from the area of the rectangle.

» Since the circles have a diameter of 20cm, then the rectangle's dimensions are 40cm and 20cm. Find the area of the rectangle.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm Area = l \cdot w} \end{align} [/tex]

  • [tex] Area = 40 \cdot 20 \: cm^2 [/tex]

  • [tex] Area = 800 \: cm^2 [/tex]

» Find the area of one of the circles. Since the diameter is 20cm, then its radius is 10cm.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm Area = \pi r^2} \end{align} [/tex]

  • [tex] Area = \pi (10)^2 \:cm^2 [/tex]

  • [tex] Area = 100\pi \:cm^2 [/tex]

» Multiply the area by two since there are two of them.

  • [tex] Area = 2(100\pi) \:cm^2 [/tex]

  • [tex] Area = 200\pi \:cm^2 [/tex]

» Let 3.14 be the approximate value of pi.

  • [tex] Area \approx 200(3.14) \:cm^2 [/tex]

  • [tex] Area \approx 628 \:cm^2 [/tex]

» Find the area of the shaded (orange) region.

  • [tex] Area \approx 800 \:cm^2 - 628 \: cm^2 [/tex]

  • [tex] Area \approx 172 \: cm^2 [/tex]

[tex] \therefore [/tex] The area of the shaded region is about 172 sq. centimeters

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

View image KANTOINEDOIX