Sagot :
Answer:
Profound implications
Relativity is one of the most famous scientific theories of the 20th century, but how well does it explain the things we see in our daily lives?
Formulated by Albert Einstein in 1905, the theory of relativity is the notion that the laws of physics are the same everywhere. The theory explains the behavior of objects in space and time, and it can be used to predict everything from the existence of black holes, to light bending due to gravity, to the behavior of the planet Mercury in its orbit.
Electromagnets
Magnetism is a relativistic effect, and if you use electricity you can thank relativity for the fact that generators work at all.
If you take a loop of wire and move it through a magnetic field, you generate an electric current. The charged particles in the wire are affected by the changing magnetic field, which forces some of them to move and creates the current.
Global Positioning System
In order for your car's GPS navigation to function as accurately as it does, satellites have to take relativistic effects into account. This is because even though satellites aren't moving at anything close to the speed of light, they are still going pretty fast. The satellites are also sending signals to ground stations on Earth. These stations (and the GPS unit in your car) are all experiencing higher accelerations due to gravity than the satellites in orbit.
To get that pinpoint accuracy, the satellites use clocks that are accurate to a few billionths of a second (nanoseconds). Since each satellite is 12,600 miles (20,300 kilometers) above Earth and moves at about 6,000 miles per hour (10,000 km/h), there's a relativistic time dilation that tacks on about 4 microseconds each day. Add in the effects of gravity and the figure goes up to about 7 microseconds. That's 7,000 nanoseconds.
Gold's yellow color
Most metals are shiny because the electrons in the atoms jump from different energy levels, or "orbitals." Some photons that hit the metal get absorbed and re-emitted, though at a longer wavelength. Most visible light, though, just gets reflected.
Gold is a heavy atom, so the inner electrons are moving fast enough that the relativistic mass increase is significant, as well as the length contraction. As a result, the electrons are spinning around the nucleus in shorter paths, with more momentum. Electrons in the inner orbitals carry energy that is closer to the energy of outer electrons, and the wavelengths that get absorbed and reflected are longer. [Sinister Sparkle Gallery: 13 Mysterious & Cursed Gemstones]
Gold doesn't corrode easily
The relativistic effect on gold's electrons is also one reason that the metal doesn't corrode or react with anything else easily.
Gold has only one electron in its outer shell, but it still is not as reactive as calcium or lithium. Instead, the electrons in gold, being "heavier" than they should be, are all held closer to the atomic nucleus. This means that the outermost electron isn't likely to be in a place where it can react with anything at all — it's just as likely to be among its fellow electrons that are close to the nucleus.
Mercury is a liquid
Similar to gold, mercury is also a heavy atom, with electrons held close to the nucleus because of their speed and consequent mass increase. With mercury, the bonds between its atoms are weak, so mercury melts at lower temperatures and is typically a liquid when we see it.
Your old TV
Just a few years ago most televisions and monitors had cathode ray tube screens. A cathode ray tube works by firing electrons at a phosphor surface with a big magnet. Each electron makes a lighted pixel when it hits the back of the screen. The electrons fired out to make the picture move at up to 30 percent the speed of light. Relativistic effects are noticeable, and when manufacturers shaped the magnets, they had to take those effects into account.
Light
If Isaac Newton had been right in assuming that there is an absolute rest frame, we would have to come up with a different explanation for light, because it wouldn't happen at all.
"Not only would magnetism not exist but light would also not exist, because relativity requires that changes in an electromagnetic field move at a finite speed instead of instantaneously," Moore, of Pomona College, said. "If relativity did not enforce this requirement … changes in electric fields would be communicated instantaneously … instead of through electromagnetic waves, and both magnetism and light would be unnecessary."
Other information about Einstein's Theory:
https://brainly.ph/question/12640404
https://brainly.ph/question/10819207
https://brainly.ph/question/16543586