what is the product, (x²+3)³?​

Sagot :

Answer:

- 9 + 27 - 27

Sanapo makatulong

[tex]\large\rm{SOLUTION}[/tex]

[tex] \tt{Remember}= \begin{cases} (a+b)³ & = \: \text{a³+3a²b+3ab²+b³} \\ (a-b)³ & = \: \text{a³-3a²b+3ab²-b³}\end{cases}[/tex]

[tex] \tt{Given \: that: \green{a = x} \: \: and \: \: \green{ b = 3}}[/tex]

Substituting the values to the first property we will get:

[tex] \implies{a³+3a²b+3ab²+b³} \\ \implies \: { \green{(x)}^{3} + 3 \green{(x)}^{2} \red{(3)} + 3 \green{(x)} \red{(3)}^{2} + \red{(3)}^{3} } \\ \implies{ x^{3} + 3x^{2} { \red{ (3)}+ 3x \red{(9)}} + \red{27}} \: \\ \implies \: {x^{3} + 9{x}^{2} + 27x + 27}[/tex]

[tex]\large\rm{ANSWER}[/tex]

[tex] \tt{ \large{\blue{ \boxed{x^{3} + 9{x}^{2} + 27x + 27}}}}[/tex]