What is the direction of seismic waves traveling from slow layer to fast layer?

(3 words only)


Sagot :

Answer:

P-waves S-waves Surface-waves

Explanation:

P-waves

P-waves, also known as primary waves or pressure waves, travel at the greatest velocity through the Earth. When they travel through air, they take the form of sound waves – they travel at the speed of sound (330 ms-1) through air but may travel at 5000 ms-1 in granite. Because of their speed, they are the first waves to be recorded by a seismograph during an earthquake.

They differ from S-waves in that they propagate through a material by alternately compressing and expanding the medium, where particle motion is parallel to the direction of wave propagation – this is rather like a slinky that is partially stretched and laid flat and its coils are compressed at one end and then released.

S-waves

S-waves, also known as secondary waves, shear waves or shaking waves, are transverse waves that travel slower than P-waves. In this case, particle motion is perpendicular to the direction of wave propagation. Again, imagine a slinky partially stretched, except this time, lift a section and then release it, a transverse wave will travel along the length of the slinky. S-waves cannot travel through air or water but are more destructive than P-waves because of their larger amplitudes

Surface waves

Surface waves are similar in nature to water waves and travel just under the Earth’s surface. They are typically generated when the source of the earthquake is close to the Earth’s surface. Although surface waves travel more slowly than S-waves, they can be much larger in amplitude and can be the most destructive type of seismic wave.

There are two basic kinds of surface waves:

•Rayleigh waves, also called ground roll, travel as ripples similar to those on the surface of water. People have claimed to have observed Rayleigh waves during an earthquake in open spaces, such as parking lots where the cars move up and down with the waves.

•Love waves cause horizontal shearing of the ground. They usually travel slightly faster than Rayleigh waves